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distribution. The density of the normal distribu- 
tion is a bell-shaped curve, symmetric about its 
mean pE, and with most of the mass concen- 
trated within one standard deviation aa of the 
mean (see figure 2.2-10). In the case of the titra- 
tion experiment, we would hope that the most 
frequently found value of the error would be 
near-zero and expect that pLE would equal zero. 
The standard deviation a& is a measure of the 
dispersion, or spread, of the errors about the 
mean and is equal to the distance from the mean 
to an inflection point on the curve f(e). The mean 
and standard deviation will be formally defined 
in a later section. 

A normal random variable is frequently 
standardized with its mean and standard devia- 
tion by the following transformation: 

Z=(E-pL,)/u, . (2.2-15) 

The cumulative distribution for this standard 
normal random variable is tabulated (table 
2.10-l) for use by the investigator, since its prob- 
ability density function, fdz), is parameter free: 

fdz)=yg . (2.2-16) 

Given the density function for the standard nor- 
mal random variable, it is natural to inquire 
about the form of density, f&), of the unnor- 
malized random variable E. Consider the 
cumulative frequency distribution for 2. By 
making the change of variables z=(s-&/us, 

=& ,&p [ -( ?);2] ds (2.2-17) 

results where e=auE+pE is a value of the unnclr- 
malized random variable. Since differentiation 
is the inverse operator of integration, equation 
2.2-17 is differentiated with respect to E to find 
f&e) (see also equation 2.243): 

1 
=-exp- - 

Js?rac I I 
( 1 

-% y2 . (2.2-18) 
a& 

Figure 2.2-10 

Note that equation 2.2-18 is not parameter free, 
as this density is a function of the parameters 
clg and up 

2.3 Expectation and the 
Continuous Random Variable 

The discussion in this section is largely 
presented with continuous random variables in 
mind. All the results, however, are applicable 
to discrete random variables: whenever a quan- 
tity is defined by an integration over a probabili- 
ty density function for the continuous case, this 
same quantity can almost invariably be defined 
by a summation over the discrete density func- 
tion for the discrete case. The reader should 
demonstrate the veracity of this statement. 

23.1 The Mean 

The mean is a measure of central tendency of 
a population. As an estimator of this central 
tendency, consider a finite random sample con- 
sisting of n values xi of the random variable X. 
If the sample frequency of occurrence f: is 
estimated from this random sample, then a 
logical estimator of the central tendency is to 
sum the product of the central value Zi of each 
class interval and the frequency of occurrence 
for that interval: 

“=i,E,~ ~* pi= C fi Zi ~ (2.3-l) 
-m i<z&x 
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where x, is the upper limit of the largest class 
interval’necessary to construct fi*. The frequen- 
cies of occurrence fi * in equation 2.3-l can be 
looked upon as weights that sum to one, and the 
quantities Zi as equally spaced values of the 
random variable. The values of the random 
variable that occur more frequently, as indi- 
cated by the random sample, receive larger 
weights through equation 2.3-l and will have 
a greater influence on X. 

Equation 2.3-l should be recognized by the 
reader as also being the definition for the center 
of mass of physical weights distributed along 
a line. That is, if mfi* represents the mass of a 
weight located at Xi, where m is the total mass 
of all the weights, then equation 2.3-l would 
give us the center of mass of the line with 
respect to the origin. In the case of a histogram, 
the role of the weights is played by the sample 
frequency of occurrence for an interval, which 
gives us the approximate relative likelihood 
that any future value of the random variable 
will occur in that interval. For calculation pur- 
poses, this distributed weight over any interval 
i is replaced by a point weight having the same 
mass as the distributed weight, but located at 
the center Xi of the interval. The sum of the 
products of the relative masses of these point 
weights, fi*, with their relative distances from 
the origin, Ziv gives us the center of mass, which 
is also a measure of the central tendency. Of 
course, if the sample size n were to become very 
large, then &r could be made very small, refin- 
ing equation 2.3-l as an estimator of the cen- 
tral tendency of a random variable. 

Reasoning similar to that leading to X as an 
estimator of the population mean can be applied 
directly to defining this parameter. First, given 
that the density function fix) is known, then the 
approximate frequency of occurrence of an 
event corresponding to an interval of size A.z 
that has as its central value I is Axi)~. Thus, 
assuming that these relative frequencies are 
centered at each 3ei, an approximate measure of 
the population central tendency, px, is 

(2.3-2) 

where the values pi are equally spaced by A.z 

b 
from each other. Of course, by letting A.r 

become smaller, a more accurate measure of px 
is developed, until px, also known as the 
expected value, E[XJ, of the random variable X, 
is defined by the following integral expression: 

This equation is the standard form for the ex- 
pected value of a &variate random variable. 

Equation 2.3-3 can also be developed direct- 
ly from equation 2.3-l by letting rz+= and 
Ax-+o: 

That is, as h becomes smaller and as the 
number of observations becomes very large, Xi 
becomes a unique continuous value of X, fi 
becomes the continuous function Ax), and the 
summation can be replaced by an integration. 
As in the case of equation 2.2-7, we can only 
say that the limit indicated in equation 2.3-4 
is reached with a very high probability as n 
becomes large; however, this probability should 
be unity as n becomes infinite. 

Note that px is a population parameter that 
is characteristic of the random variable X, while 
X, being derived from values of a finite random 
sample from the population of X, is only an 
estimate for pP Estimators such as 5 will be 
developed in greater detail in a later section. 

Problem 2.3- 1 

a. Find 5 from 100 rmholcm histogram of 
problem 2.2-2. 

b . Find px for the random variable of prob- 
lem 2.2-l. 

2.3.2 Generalization and 
Application of the Expectation 
Operator 

The operation of finding an expected value 
can be generalized by considering a function 
g(X) of continuous random variable X. If we 



22 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

wish to find the average effect of the function 
g(x) over the outcomes of a random sampling, 
we again resort to the approximation 

go= iaE,h fi*g(xi) * (2.3-5) 
- m 

That is, we weight g(x), where g(x) is evaluated 
at the center of every class interval, by the fre 
quency of occurrence of that interval and sum 
all the weighted values ofi). To obtain the 
population equivalent of g(x), n is taken to be 
large, while AX is taken to be small; this equiva- 
lent is denoted by the expectation symbol 
EMx)l: 

ElAX)l=~ g(x) = ~mgWjWdx . (2.3-6) 
n*- -00 
AZ-0 

Equation 2.3-6 represents the general form of 
the expectation operator for a univariate distri- 
bution when the random variable is continuous. 
A similar form exists for discrete random vari- 
ables, in which the integration has been replaced 
by summation. 

A trivial but useful property of the expecta- 
tion operator is that the expected value of any 
constant c is that constant; for the continuous 
case, this is easily demonstrated as 

E[cj=!~flx)~~=~-~z)dz=c (2.3-7) 

where equation 2.2-11 has been invoked. A 
more important property of E is that it is a 
linear operator; that is, 

E[agl(X)+bgs(X)1=aE[gl(X)1+bE[g2(X)1. (2.3-8) 

This property results because in the continuous 
case, integration itself is a linear operator: 

As a practical example of finding the expected a 
value of a random variable, consider the prob- 
lem of finding the mean of X where X is a 
normal random variable with mean c(~ and 
standard deviation ax: 

E[X’j=&Exexp[-1: 12]ck (2.3-10) 

By a change of variable z=(x-~~)/u~, we see 
that equation 2.3-10 becomes 

-- E[XJ- & _~~x+~xf)e-z2'2~~=~x'x, (2.3-11) PO 

because z *exp(-z2/2) is an odd function of z in 
the interval (-~,a), and equation 2.3-7 holds 
(px, being a population parameter, is constant). 
Equation 2.3-11 is the reason why px is defined 
to be E[XJ. 

2.3.3 The Variance, Standard 
Deviation, and Coefficient of 
Variation 

Although the mean px is a measure of the 
central tendency of a random variable, it gives 
no information as to how frequently a random 
variable will be encountered in its vicinity. The 
variance gx, defined as the expected value of 
the function g(X)=(X-px)2, is a population pa- 
rameter that quantifies this concept. The vari- 
ance can also be looked upon as an operator that 
is defined in terms of another operator (the 
expectation operator) as follows: 

+VW~=EW-P~)~~ , 

=jLPx~%~,~ (2.3-12) 
-00 

where Var[x] represents an operator that 
operates on X. The intuitive sense of ~7% is that 
it is the sum of the frequency weighted devia- 
tions, which have been squared, from the mean. 
As such, a$ represents the amount of disper- 
sion of the random variable about the mean: 
when ug is relatively large, then a random 
variable is less likely to have values in the 



By exer&ing the l&ear property of the ex- 
pectation operator, equation 2.3-12 can be ex- 
pressed in an alternate form: 

u~Var[X]=E[(X-~~)2]=E[X2-~~~+~~] ) 

=E[X2]-pg. (2.3-13) 

The variance operator, like the expectation 
operator, can be generalized to operate on any 
function g(X): 

Vark(X)l=E[g2(X)l-(Ek(X)1)2 . (2.3-14) 

The variance operator, however, is not a linear - 
operator, as demonstrated with the function 
g(x)=a+bX: 

Var[g(X)]=E[(a+bX)2]-(E[u+b~)2, 

= b2E[X2]-b2+ b2cri , (2.3-15) 

because E[u+bX]=a+bpA-. By letting b=O in 

B 
the above example, one can demonstrate that 
the variance of a constant, as expected, is zero. 

When the standard deviation is normalized by 
the mean of the random variable (pX#O), it is 
referred to as the coefficient of variation V,: 

v,=u,lp~ . (2.3-16) 

Estimators for this population parameter, as 
well as the variance and standard deviation, are 
discussed in a later section of this report. 

As an example of an application of the vari- 
ance operator, consider an application on the 
standard normal random variable 2=(X-~,)/,: 

Var[(X-,)lu,l=var[x]/~~ 1 (2.3-17) 

which results by analogy with equation 2.3-15. 
Thus, if X is a normal random variable with 
mean px and variance 2x, then 2 is a zero-mean 
random variable with a variance of unity, which 
is commonly denoted N(O,l). 

Problem 2.3-2 
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immediate vicinity of the mean. The standard i. Plot fix). 
deviation ax is simply the square root of the 
variance: u w=(Varlxl)%. 

ii. Derive and plot F(x). 
iii. Calculate E[X] and Var[x]. 

b. An estimator of the variance u%of the 
random variable X can be developed 
directly from equation 2.3-12. First, 
fiz)dx is estimated by f: of equation 
2.2-2. Then x is replaced by Xi, the center 
of each class interval corresponding to fi*. 
Finally, px is estimated by X from equa- 
tion 2.3-l. Then 

S;=.<xc,&fi* 
- m 

gives an estimate of u$ Apply this esti- 
mator to the log-transmissivity data of 
table 2.2-3. 

2.4 Jointly Distributed Random 
Variables 

The investigator frequently encounters the 
problem that he or she has to deal with two (or 
more) random variables in the same probabil- 
ity statement. As an example, in the case of 
random variables X and Y, where X and Y are 
possibly correlated, one might desire the prob- 
ability that X is less than or equal to a, and Y 
is less than or equal to b. If the investigator 
should know the form of the joint probability 
density function flx,y) for these two random 
variables, then this probability statement is 
definable: 

P(X$.z and Y<b) 

where F(u, b) is the equivalent cumulative 
distribution function. (The statement P(X+z 
and Y<b) is also denoted frequently as P(X+z, 
Y<b); the more explicit form will be used in this 
discussion.) As in the univariate case, it is re- 
quired that the mass under the joint probabili- 
ty density function equal unity: 

j= ~fl&2miy=l . (2.4-2) -09 -co 
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The concept of joint probability density func- 
tions applies to any number of multiple random 
variables; the following discussion, however, is 
largely restricted to the bivariate case. 

As an example of an experiment yielding 
jointly distributed random variables, consider 
the results from a simple nonsteady-state pump- 
ing test of a confined aquifer: When the Theis 
equation is used to evaluate data from these 
tests, information concerning the storativity 
and transmissivity of the aquifer results. In- 
deed, we can easily imagine that these quanti- 
ties am random variables, varying from location 
to location in response to the local distribution 
of materials composing the aquifer. More impor 
tant, however, would be the manner in which 
they vary with regard to each other: Should the 
clay content of the aquifer increase at some 
point, it might be expected that the transmis- 
sivity will decrease while the storativity, mflect- 
ing the compressibility of the aquifer, would 
increase Thus, quite possibly these quantities, 
with regard to the aquifer in question, could be 
treated as jointly distributed random variables 
which are, in some manner, interdependent. 

Assume for the moment that we have deter- 
mined the form of the joint density function of 
storativity and transmissivity. For argument’s 
sake, let X represent the transmissivity random 
variable (or its logarithmic transformation) and 
Y represent the storativity (or a functional 
transformation thereof) and then denote the 
joint density as @,y). Now assume that we are 
interested in the probability that X is less than 
or equal to a, regardless of the value of Y; that 
is, we wish to evaluate the probability that our 
measure of the transmissivity will take on a spe- 
cific range of values, whereas the exact value of 
storativity is unimportant to us. For our pmb- 
ability statement regarding X to be meaningful 
all values of Y which influence the joint density 
function must be taken into consideration, for 
different values of Y would surely influence a 
statement on X alone !lb obtain the total con 
tribution of Y to the joint density function, we 
allow that Y may take on any value in the inter 
val (-09 00) and write our probability statement as 

P(X<u and -=J<Y<=q= jl Imfflx, y )czydz -co--o3 

=jlfx(2,& (2.4-3) -co 

in which the evaluation of the inner integral 
with respect to y results in a function fx(z) that 
meets all requirements to be a probability 
density function. Thus, in general, univariate 
density functions can be recovered from joint 
density functions by integration, and this in- 
tegration has the effect of summing the total 
contribution of one random variable in the 
bivariate joint density onto the axis of the other 
variate, the second variate giving the relative 
frequency of occurrence of the event in question. 
These densities are referred to as marginal 
probability density functions and, with respect 
to the bivariate joint density flay), they are 
defined as 

(2.4-5) 

where fx(x) is the marginal density for the X 
random variable and similarly fy(y) for the Y 
random variable. The marginal-density concept 
is easily extended to multiple random variables 
when they are jointly distributed. 

2.4.1 Expectation of Jointly 
Distributed Random Variables 

The expectation operator for jointly distrib- 
uted random variables is defined in the same 
manner as in the univariate case. Thus, ifX and 
Y are jointly distributed, and g(X, Y) is a func- 
tion of these two random variables, then a 
general definition of the expectation operator is 

If on the other hand, we desire the expected 
value of h(X), which is a function of X only, we 
set g(z,y) equal to h(x) and proceed as in equa- 
tion 2.4-6). The result, 

(2.4-7) 

4 
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1) shows that, in such cases, finding the expected 
value reduces to finding the marginal density 
and integrating. By letting h(X) equal .Xx; one 
realizes that the mean px is equal to the in- 
tegral of the product of x and the marginal den- 
sity ~J&x), as might be expected. 

Consider the case where g(X, y) equals the 
product (X-cr,)(Y-).Q$ The expected value of 
this product gives an indication of how X and 
Y vary together. If the absolute value of the ex- 
pected value of this product is exceptionally 
large, then one would expect that X and Y are 
highly correlated. This expected value of X and 
Y is referred to as the covariance of X and Y, 
and is denoted Cov[X, y1 or uxy: 

covtx Yl=~tw-P~wPy)l 

=EWl-ccyccx . (2.4-8) 

Note that the covariance of X with itself is 
cov[x,xJ=var[x]. 

Returning to the example of transmissivities 
and storativities of the previous section, we see 
that the covariance provides a measure of the 

B 
degree of interdependence between random 
variables. That is, because X and Y are both 
random, we would not expect observations of 
X and Y to show a perfect relationship; rather, 
the relationship will be clouded with noise. 
Because the expected value implies a frequency- 
weighted average of the function in question, 
and because the frequency distribution will 
reflect the amount of relationship between X 
and Y, su mming the product of these frequen- 
cy weights with (X-px)(Y-py) over the total 
variate space will give the average relationship 
between X and Y. It will be demonstrated in the 
next section that if X, the measure of transmis- 
sivity, and Y, the measure of storativity, were 
independent, then the covariance would theo- 
retically be zero. However, if our intuition is cor- 
rect, we would not expect’this; rather we might 
expect, should the aquifer have a rather high 
clay content, that the two variables will be 
negatively correlated. 

If the covariance is normalized with the stand- 
ard deviations of the two random variables, then 
it is referred to as the correlation coefficient 
PXYZ 

Pxy=CwLYJlbxay) . (2.4-9) 

The correlation coefficient, as a measure of the 
linear relationship between X and Y, has the 
property that its absolute value is less than or 
equal to unity: 

IPXYlJl * (2.4-10) 

That is, when X and Y are precisely linearly 
related, then Ipxy( will equal unity. If there is 
no relationship between X and Y, as shown in 
the next section, Cov[X, yl and therefore pxy 
will be zero. This property is demonstrated in 
appendix 2.11.1, but this appendix requires 
some knowledge of the next section. 

2.4.2 Independent Random 
Variables 

Two random variables X and Y are said to be 
independent if, for all a and b, 

P(X<u and Y<b) 

=P(X$z)P( Y<b) 

= I” I” fxwfy(Y)~Y~ , (2.4-11) 
-co -00 

where fx(3t) and fr(y) are the densities of X and 
Y, respectively. Equation 2.4-11 implies that 
the joint density function of two independent 
random variables is the product of their individ- 
ual densities, that is, 

AsY)=f+#y(Y) - (2.4-12) 

Of course, an event corresponding to X<u and 
Y<b would be expected to occur with equalor 
less frequency than an event corresponding to 
either X<a or Y<b separately. Only in the 
case of a complete lack of dependence between 
these events can we say that P(Xsu and Y<b) 
=P(X<u)P(Y<b). This is a somewhat intuitive 
result that has already been used in connection 
with the two-dice experiment; if X is an outcome 
of the first die and Y the second, then P(X=l 
and Y=2)=P(X= l)P( Y=2)= l/36. 

A random sample is, ideally, a collection of 
independent random variables. That is, prior to 
their observation, each element of a random 
sample is a random variable; its value is not 
known until after the observation process is 
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completed. These outcomes should not have any 
interdependence which might affect the sample 
density. This generally requires careful design 
of the experiment from which the observations 
result so that all Xi,i=l, . . . . n, are independent. 

The question of independence of two random 
variables X and Y has important implications 
on their covariance, for if X and Y are independ- 
ent, then 

=E[X-j4JJ E[Y-Fy]=O . (2.4-13) 

However, if the covariance of two random 
variables is zero, it does not necessarily follow 
that they are independent. One may only 
suspect that independence is the cause of a zero 
covariance. 

When an experiment which results in a bivar- 8 
iate random variable is conditioned over a range 
other than (-00, m), a reduction of the potential 
sample space available to the experiment re- 
sults. In the previous example of jointly vary- 
ing transmissivities X and storativities Y, if we 
were interested in the conditioned results that 
X is less than a, given that we are only in- 
terested in a specific range of values (b,c) for 
storativities, then the specific value which Y 
takes on does not interest us, as long as it falls 
between b and c. One could proceed as in equa- 
tion 2.4-3 to evaluate this probability, except 
for an obvious pitfalk The resulting probability 
statement over X, where X can take on any 
value less than a, would not necessarily have the 
property of cumulative distribution functions 
noted in equation 2.2-11. That is, as X is the 
remaining active random variable in the prob- 
ability statement, its probability of occurrence 
over the interval (-00, 00) should be unity: 

2.4.3 Conditional Probabilities 

The marginal probability density function, as 
developed in equation 2.4-3, can be considered 
to be a special case of a more general concept 
referred to as conditioning. Generally speaking, 
a multivariate probability statement is subject 
to conditioning when a subset of the random 
variables pertaining to an experiment falls 
under some restriction, causing the remaining 
variables to be conditioned by this restriction. 
In the case of the marginal density function, we 
examined the probability that X is less than a, 
given that Y can take on any value in the in- 
terval (-a,~+ Thus, the restriction that Y take 
on a specific set of values conditions the prob- 
ability that X is less than a. Formally, we state 
this as 

P(X<up<Y<q . 

In general, the restriction can be applied to any 
intxs-val (b,c), where b<c, and need not be limited 
to the interval (-00, 00). However, as in the case 
of the marginal density, the variable or 
variables subject to restriction are effectively 
removed from the probability statement: the 
variable or variables being conditioned are the 
ones over which the frequency of occurrence of 
a specific event may be questioned. 

lim P(X<a( b<y<c) = 1 . 
a-- 

However, by restricting Y to a specific interval 
(b,c), then as a goes to infinity, an integral of the 
form of equation 2.4-3 will most probably have 
a lesser value than unity when the inner integral 
over y is restricted to a range of something less 
than (-00, 00). Thus, an integration with the form 
of equation 2.4-3 alone will not produce a form 
suitable to serve as a cumulative distribution 
function for the conditioned variable X. 

So that a probability statement resulting 
from conditioning has the limiting value of 
unity, these statements must be appropriately 
normalized. If, as in the bivariate case, we desire 
P(X<u(b<Y<c), then we must normalize by 
P(-cKX<= and b<Y<c); that is, 

P(X<uJb<Y<c)= P(X<u and b<Y<c) 
P(--cX<c= and b<Y<c) 

ia_ [ flx,y)dydx 

i: [ Asy)dy~ 

r”, [ AwWy~ = (2.4-14) 



variable X may be defined as 

which of course gives the limiting value of unity 
when integrated with respect to zc over the in- 
terval (-00, =). Note that when b=-a and c=m, 
then flxIb<Y<c)=f+), as indicated by the 
previous discussion of marginal densities. 

Remarkably, the conditional density exists 
even when the restriction is that, ‘in the exam- 
ple of the bivariate case, Y take on a specific 
value. To see this easily, consider P(X<a 1 Y=c); 
then equation 2.4-15 may be written as 

c+6 
1 f(xaWy 

fixIY=c)=lim ’ - 
a-+0 c+a 

1 f&WY c 

=firn vb,~++m41~~ 
6-+0 [Fyfc + 6) -Fy(c)]/S 

=dF(s y WY 
dFyCyVdy y=c 

-fkc) 
fy(4 * (2.4-16) 

Thus, we may recover the density function for 
X for any particular slice, Y=c, through the 
joint density function f(x,y). If flx,y) were de- 
fined for the example of transmissivity and 
storativity random variables, equation 2.4-16 
would enable us to predict the probability of 
events concerning transmissivity X for any 
given value of storativity Y. 

The student should also note that some 
remarkable simplifications result if X and Y are 
independent random variables. That is, if X and 
Y are independent, then from equations 2.4-12 
and 2.4-14 we see that 

P(X<a ) b<Y<c) =P(X<u) . (2.4-17) 
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Thus, the conditional probability density func- 
t&i, flxl b<Y<c), for the conditioned random 

Indeed, this is yet another way in which we can 
define independence of random variables. 
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The following problem is intended to familiar- 
ize the student with the concept of condition- 
ing; it is not intended to be rigorous. The key 
to understanding conditioning, especially for 
discrete random variables, is to understand how 
it restricts the sample space and realize that the 
probability of occurrence of an event which con- 
tains the entire remaining sample space must 
be unity. 

Problem 2.4- 1 

a. 

b. 

C. 

d. 

e. 

Given two dice that are thrown sequen- 
tially, what is the probability that the 
first is a three and the second is a two? 
That is, 

P(X=3 and Y=2)? 
What is the probability that the sum of 
the dice is five? That is, 

P(x+ Y=5)? 
Given that the first die is three, what is 
the probability that the second is two? 
That is, 

P( Y=2lX=3)? 
Given that the first die is three, what is 
the probability that the sum of the two 
dice is five? That is, 

F(x+Y=5Ix=3)? 
Given that the first die is three, what is 
the probability that the sum of the two 
dice is less than or equal to five? That is, 

P(x+ Y<5IX=3)? 
Parts c, d, and e are conditional probability 

statements; that is, the probability statement 
is conditioned by prior information. 

2.4.4 Variance of a Column Vector 

Our purpose in this section is to develop a 
representation for the variance of a column 
vector. As a vehicle to this end, consider the 
linear equation 

Y=alX1+a&~+a& (2.4-18) 

where Y, X1, X,, and X3 are random variables 
and al, a2 and a3 are constants. The variance 
of Y is 
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+2ala2uX,X,+2ala3uX,X3 

+2a2a3uX$3 (2.4-19) 

where correlations between X,, X2, and X3 
have been allowed for. A vector representation 
for equation 2.4-19 is1 

Var[Y]=E[Y2]-(E[Yj)2=E[aXXTaT] 

-EW[aXj (2.4-20) 

where 

Xl 
a=[al,a2,a3] and X_= X2 I I X3 * 

Because expectation is a linear operator, the 
right side of equation 2.4-20 can be expressed 
as 

=@WZ-E[~)(&-E[X])TjgT (2.4-W 

where aX=XTaT. The expected value of a -- 
matrix %he matrix of expected values of each 
element. Thus, 

4 uxlxz ux1x3 
l 2 uxlxz -3 -2x3 (2.4-22) 

%x3 “52x3 43 

This matrix is defined to be the variance of a 
3 X 1 column vector &, and allows one to express 
equation 2.4-19 in matrix notation as 

Var[~=@arlXjgT . (2.4-23) 

‘Throughout this text singly underlined symbols repro 
sent vectors and doubly underlined symbols represent 
matrices. 

If the variances u$~, o&, and gx are all 
3 

equal, the matrix 2.4-22 becomes 

1 pxlxz px1x3 

vfexl= px,x, 1 pxzx3 
a2 (2.4-24) 

px1x3 pxp3 1 

where px.x. is the correlation coefficient for Xi 
and Xi, & a2 is the common variance. A fur- 
ther reduction in equation 2.4-22 occurs if X,, 
X2, and X3 are uncorrelated, causing the cor- 
relation coefficients in equation 2.4-24 to be 
zero. In this case, 

varpg=@ (2.4-25) 

where L is a 3X3 identity matrix. These forms 
have practical importance in regression. 

Problem 2.4-2 

a. Carry out the expectation indicated and 
show that equation 2.4-19 holds. 

b. Demonstrate that equation 2.4-21 holds 
and that 

T Var~=gbr~~ . 

C. Let Yi=% & where &ail,ai+iJ, and &, 
defined as in equation 2.4-20, is a column 
vector of random variables. Further, let 
_Y=AX, where 

_Y= 

Yl 
y2 
. 

tP 

and A_= 

That is, A, is a p X 3 matrix composed of 
the row vectors ai, i=l,...,p. Show that 
Var~=Var[A~=A_Var[XlA_T. (Hint: 
Equation 2.4-22 still defines the variance 
of a column vector; 

u,yi=E[YiYjl-EtYi~[Yjl 
=EhXXTuT] -E&CJE@z~]., - 4 

4 
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2.5 Estimators of Population 
Parameters 

A statistic is defined as any computation 
from a random sample resulting in a specific 
value. As such, a statistic is considered to be a 
random variable, since it is highly probable that 
the computed value would change from random 
sampling to random sampling. Note that this 
definition precludes that a statistic contain any 
unknown parameters. Estimators of population 
parameters are considered to be statistics and, 
therefore, random variables. Consider equation 
2.3-l as an estimator of the mean: 

F= C foci . 
i~,lAx 

(2.5-l) 

The estimated frequency fi* is computed from 
values of observations xi originating from a 
random sampling of the sample space. However, 
prior to sampling, a random sample is merely 
an abstract collection of random variables 
Xi. i= l,..., n. Any function of random variables, 

3 
as equation 2.5-l would be prior to sampling, 
is also a random variable, perhaps having a com- 
pletely different distribution than those individ- 
uals composing the collection. 

Our discussion of statistics will largely be 
from the a priori viewpoint; that is, in the case 
of equation 2.5-1, Z is the value of the random 

* variable X, which is an estimator for the popula- 
tion mean, as developed from some arbitrary 
random sample. 

2.5.1 Mean Estimator 

As an estimator for the population mean, 
equation 2.5-1, in addition to being cumber- 
some to compute, has the debility that it is 
dependent upon an arbitrary selection of a class 
interval. That is, since $ is dependent upon AZ, 
the value of X will depend upon the choice of 
llix used in the computation. As a means of pur- 
suing this problem, assume that we have at our 
disposal a random sample consisting of n obser- 
vations, and at some point their distribution ap- 
pears as in figure 2.5-l. Because AZ is arbitrary, 
it can be reduced to d, the minimum of all dif- 

1 
ferences in neighboring values of the random 

variable. Then fi* would take on only two 
values, l/n or 0, and would have the ragged saw- 
toothed shape shown in figure 2.5-2. The teeth 
in figure 2.5-2 will be concentrated in regions 
where fi* in figure 2.5-l is larger. Of course, 
that a repeat value of a random variable could 
occur is highly unlikely, as the probability of 
such an occurrence is essentially zero for a con- 
tinuous random variable (see equation 2.2-14). 
By using the class interval 6 of figure 2.5-2 in 
our computation, we see that the problem of 
estimating frequency weights for pi, the central 
location in each class interval, from a discrete 
data set has essentially been removed, as these 
weights now take on only two specific values for 
this and any other smaller class interval. 

The use of the smaller class interval, 6, is ex- 
pected to produce a better estimator of the 
population mean because a value of X would 
contain less measurement error associated with 
the arbitrary selection of the class interval. It 
is still cumbersome, however, to calculate the 
central value pi of these possibly very small 
class intervals, especially when one considers 
that many do not contribute to the estimator. 
We ask ourselves if it is not possible to use the 
observations xi in their place. By reducing &r 
even further until every observation is isolated 
in the center of its own infinitesimally small 
class interval, in which case $ would remain at 
the l/n level, observations Xi can be used in 
place of jEi in equation 2.5-l without significant- 
ly altering the basis of our estimator. Using 
future observations Xi of the process in place 
of central-interval values, Zi, an estimator 
based on an infinitesimally small interval would 
appear as 

x= + i,Xi (2.5-2) 
i- 

where n is the size of the random sample, and 
xi, i=l,..., n, is the collection of random 
variables from the random sample. Equation 
2.5-2 is the preferred estimator for the popula- 
tion mean. 

A sample statistic is said to be unbiased if its 
expected value is equal to the population param- 
eter that it estimates. Consider the expected 
value of the sample mean, derived from random 
variables Xi, i=l,...,n. Since E[Xi]=ccx, 
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Figure 2.5-l 

Figura 2.5-2 

(2.5-3) 

Hence, x is an unbiased estimator of pP Al- 
though ex amining an estimator for unbiased 
qualities is important, it does not necessarily in- 
sure that the estimator is the most efficient (or 
best) in the sense that the variance of the 
estimator is the smallest. It is, however, an im- 
portant quality, and the variance estimator is 
examined for this quality in the next section. 

Problem 2.5- 1 

a. Recompute the sample mean for the data 
set in problem 2.2-2 using equation 2.5-2 
as the mean estimator. How does this 
result vary from that of problem 2.3-l? 

Iii, . . 
How do you, in light of equation 2.2-14, 
explain the repeat values in the data set 
(note that this data set represents a ran- 
dom sampling of a continuous random 
variable)? 
With regard to a large regional aquifer, 
well data such as that in table 2.2-2 repre- 
sent point estimates of transmissivities. 
The best estimate of the effective trans- 
missivity (the one to use in modeling the 
flow field) is generally considered to be the 
geometric mean of these point estimates. 
The statistic for the geometric mean is 
defined as 

where Ti, id,..., n, is a random sample 
from the sample space of the T random 
variable. Letting Xi=loglOTi, we see that 

c 

4 
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= ~ i~lXi=X . 
Therefore, 

Fg=l@ . 

What is the geometric mean of the trans- 
missivity data in table 2.2-2? 

As a measure of the dispersion about 
the geometric mean, one could use the 
estimator 

What is the dispersion D about the geo- 
metric mean? Use resu ts i of problem 
2.3-2, part b, as values for X and S:. 
Considering the dispersion, how do you 
feel about Fg being the effective transmis- 
sivity of the carbonate rocks of central 
Pennsylvania? 

2.5.2 Variance Estimator 

As an estimator of the variance 2X, consider 
using an estimator S$ whose value s;r” is calcu- 
lated from the equation 

(2.5-4) 

which is analogous to equation 2.3-12 for the 
population parameter. If the class interval is 
taken to be small enough so as to isolate every 
future observation Xi in a class interval, then 
equation 2.5-4 can be rewritten in terms of ran- 
dom observations Xi, i= l,..., n, as 

G= ; i=l ’ ’ (xi-pX)2 , 

because $=1/n and Xi=Xi prior to sampling. 
When the underlying population Xi, i=l ,...,n, 
is normally distributed, it can be shown that 

1 
equation 2.5-5 is the most efficient, unbiased 

estimator of the variance o$in the sense that 
its variance is the least of all possible unbiased 
estimators for u$. 

On occasion, the population mean px can be 
determined from other considerations, as 
was done in the titration experiment in section 
2.2.5. However, usually px is also unknown, re 
quiring that px be replaced by X in equation 
2.5-5: 

s!Fz~i=l i l i(X-X)2. 

To test whether equation 2.5-6 is an unbiased 
estimator of gx, the expected value of S$ is 
determined. The actual mechanics of this opera- 
tion are presented in appendix 2.11.2; only the 
result is presented here: 

(2.5-7) 

Thus, S$ is a biased estimator of o$~ To pro- 
duce an unbiased estimator of gx, S$ is multi- 
plied by the ratio nl(n-1): 

. (2.5-8) 

This estimator is unbiased but less efficient 
than equation 2.5-6. However, it is the pre- 
ferred estimator for small sample sizes. 

Heuristically, one can argue that this adjust- 
ment to the estimator is necessary, because the 
population mean PL is being estimated by the 
sample statistic X. The sample mean will be 
located at the centroid of the random sample, 
regardless of whether its value is near that of 
the population mean. Thus, an equation that 
estimates the variance about this centroid will 
produce a smaller value than if the estimate 
were made about the population mean. The ad- 
justment, then, merely compensates for the 
smaller deviates produced by using X in place 
of P.T(. 

Equation 2.5-8 can be rewritten, with the aid 
of some algebraic manipulation, to produce a 
slightly more useful form for hand calculations: 
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si= _ _ 5 jl tximx12 

= 5 
-I 

j, x+i?z E 
i=l 

xi+& 
I 

=--qi, x+q . (2.5-9) 

The estimator for the standard deviation is 
taken to be the square root of the variance 
estimator. Values xi, i=l,..., n, obtained by 
sampling the population of X randomly, are 
used in place of Xi in equation 2.5-9 to obtain 
a value sj?j for the sample statistic S$ 

2.5.3 Estimator of Correlation 
Coefficient 

In a manner analogous to the variance, an 
estimator for the covariance, and therefore the 
correlation coefficient, can be derived. Let Rxy 
represent the estimator for the correlation coef- 
ficient pxy; then, for paired data, 

~ 
i=l 

(Xi-~)( Yi- P) 

RXY’ 
(2.5-10) 

I 
~ (Xi-~2i~l (Yi-E)2 

l/n 

i=l 
I 

or, provided that Sx and Sy originate from the 
paired data, 

1 
Rxy’ (n-l)SXSy i=l i 

~ (X-X)(Yi-E) t (2.5-11) 

which can be written, for purposes of hand 
calculation, as 

Rx,’ 
I 

(2.5-12) 

where Sx and Sy are calculated by taking the 
square root of either equations 2.5-8 or 2.5-9. 
The actual value rxy of Rxy is obtained by 

using values xi, i=l,..., n, from a random SCUII- 

ple in place Of Xi. 

2.5.4 Summary 

In summary, population parameters and 
equivalent sample statistics can be tabulated as 
folIows: 

Poptllation 
oarameter 

CL a=$ i xi 
i-l 

VX c,= SXIX 

PXY Rx,= ’ ( i XiY&-nPX/ 
(?Z-l)S#y i=l 

c 

These estimators can also be stated in matrix 
form. For instance, let di=x& then a value for 
S$ is 

(2.5-13) 

where d is a column vector of deviates and @ 
is its transpose. If ei=Yi+, then a value for 
Rxy is 

eTd -- 
‘jr’= (n-l)sxsy * 

(2.5-14) 

Forms simiIar to equations 2.5-13 and 2.5-14 
are commonly encountered in linear regression. 

Problem 2.5-2 

Using the following data set, calculate the 
sample mean, variance, and standard deviation 
of both dissolved solids and specific conduct- 
ance; then calculate their correlation coefficient. 

4 
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Specific conductance and dissolved solids data for 
wells in carbonate rocks of Maryland 

(From Nutter, 1973. p. 63-661 

Dissolved solids 

@Pm) 

278 257 
1.120 610 

533 338 
723 458 

462 264 
1,030 562 

357 231 
304 175 

469 268 
641 388 
969 638 
876 532 

721 405 
895 610 
501 304 
323 171 

310 201 
1,230 736 

604 290 
319 208 

704 464 
1,130 688 

600 342 

2.6 Transformation of Random 
Variables 

As we have noted previously, statistics are 
combinations of random variables and, as such, 
must be random variables themselves. If the 
population from which the random sample is 
selected can be identified, then one can frequent- 
ly identify the probability density functions of 
statistics, which are estimators of the popula- 
tion parameters. If a density function is iden- 
tified, then one should be able to develop criteria 
for testing the accuracy of these estimators. 
With these objectives in mind, we proceed to 
identify density functions that result from the 
several types of transformations that produce 
statistics. 

Before proceeding with this identification 
process, we make note of two general results 
from expectation which are applicable to all 

random variables, regardless of their distribu- 
tion. In general, if Xl, X2,...& are independent 
variables with identical mean px and identical 
standard deviation ax, then 

x2. ; xi (2.6-l) 
n i=l 

is also a random variable with mean 

ppqfij= 1 n j, E[xil’PX (2.6-2) 

and variance 

a~2=Var~ji]= ~ ill Var[Xi]=U~/n . (2.6-3) 
= 

Equation 2.6-2 was used previously to show 
that X is an unbiased estimator of px, and 
equation 2.6-3 is demonstrated more fully in ap- 
pendix 2.11.2. Note that equation 2.6-3 only 
succeeds because COV[Xi,Xj]=O, i Zj; that is, 
the Xi’s are independent. 

The square root of equation 2.6-3,az, is also 
known as the standard error of X. The standard 
deviation of any statistical measure is referred 
to as the standard error of that statistic. 

2.6.1 Sum of Independent Normal 
Random Variables 

Let Xl and X2 be independent normal random 
variables, Xl with mean zero and variance one 
(N(O,l)) and X2 with mean zero and variance k 
(N(O,k)). How, then, is their sum distributed? To 
answer this question, consider 

P( Y<y ) =mx, +x&J 1 , 

where Y=X,+X,. By noting that P(X,+X,< 
y)=P(X,<y-X2 and -mG2<m), comparison 
with equation 2.4-11 shows that 

=y 
,-r2,/(2k) 

--oo 
Fx, (y-x2) J2*~ d+ . (2.6-41 
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To find the probability density function of Y, 
we differentiate Fy(y) with respect to y; that is 

03 e-(y-“2)2/2 

5 
e-z;/(2k) 

= 
--OD .pT $5z dx2 

1 =- 
27rjx 

I 
exp[-(y2-2yx2+(k+l)x&)/2]cEx2 (2.6-5) 

which, after some algebraic manipulation, yields 

fyw= 
exp[-y2/(2k+2)1 

2?& 

&p[-( X2J5 -Y J2*2)'] &2* (2’6-6) 

By letting u=fi x ( 2/F -YJg$ then 

fYw= exp[-y2/(2k +2)] 1 U 2/2du 
Jm J%F-” 

= ew[-y21(2k +2)1 
&Go 

(2.6-7) 

which follows from equation 2.2-11. Thus, the 
sum of two independent zero-mean normal ran- 
dom variables, one with variance unity and the 
other with variance k, is a normal random 
variable with variance k + 1; that, is, N(O,k + 1). 

If, in the previous problem, k were to equal 
one, then we see that the sum of two iV(O.l) in- 
dependent random variables is a N(0,2) random 
variable. By adding yet another independent 
N(O,l) random variable to the previous two 
N(O,l) random variables, induction tells us that 
a N(0,3) random variable results. Thus, in 
general, the sum of n independent N(O,l) ran- 
dom variables results in a N(O,n) random 
variable. 

We are now in a position to determine the dis- 
tribution of the statistic X, as shown in equation 

2.6-1, if X is determined from a random sam- 
ple in which all the observations Xi, i=l,...,n, 
are independent normal random variables with 
common mean px and variance & that is, 
N(~X,& We note from equation 2.6-3 that X 
has the standard deviation ox/& If we stand- 
arize X by its mean and standard deviation, and 
multiply this result by & then 

results. We see that this new statistic is the sum 
of n normal random variables, each with mean 
zero and variance one. From the previous para- 
graph, equation 2.6-8 must be a normal random 
variable with mean zero and variance n. To ob- 
tain a random variable with mean zero and 
variance unity, one would divide equation 2.6-8 
by the square root of n. By inspection, then, the 
quantity (X-ax)/ must be a standard 
normal random variable, and X must be normal 
with mean px and variance &n. Thus, if one 
knew that a random sample were composed of 
normal random variables with a particular mean 
and variance, then one could investigate the 
probability that a future determination of the 
sample mean could take on a particular range 
of values. 

2.6.2 The Chi-Square Distribution 

We are frequently concerned with the square 
of a random variable and may wish to know its 
density function. Assuming that the random 
variable X is normally distributed with mean 
zero and variance one (N(O,l)), we may inquire 
as to the nature of the distribution of its square, 
Y=X2. Proceeding as in the previous section, 
we find the cumulative distribution of Y: 

I 
5 &I2 

-dx . 
=-i-T J% 

(2.6-9) 

c 

By taking the derivative of F&J), one finds the 
density function of E 

4 
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(2.6-10) 

which is the &i-square density function with 1 
degree of freedom. 

Chi-square random variables have a useful ad- 
ditive property similar to that exhibited by in- 
dependent normals. Namely, if Y, and Y2 are 
independent &i-square random variables with 
degrees of freedom y1 and y2, then Y, + Y2 is a 
&i-square random variable with degrees of 
freedom y1 + v2. Consequently, if Y1, Yz ,..., Y, are 
independent &i-square random variables each 
with 1 degree of freedom, then Y, + Y2 is a chi 
square with 2 degrees of freedom, ( Y1 + Y2) + Ys 
is a chi square with 3 degrees of freedom and, 
in general, $, Yi is a chi square with n degrees 
of freedom. Values for the cumulative distribu- 
tion function of the &i-square distribution with 
v degrees of freedom are to be found in table 
2.10-2. 

If xi, i=l ,...,n, are independent normal ran- 
dom variables, each with mean px and variance 

B 

4, theniil((X+x)/p)2 must be a &i-square 
random variable with n degrees of freedom. This 
follows from the previous argument by letting 
Yi=(Xi-px)2/$xand noting that Yi is the square 
of N(O,l) random variable Furthermore, because 

= 
- (2.6-11) 

the statistic Sican be written in terms of this 
sum as 

(n-1)Si n fxi-PX12 (x-PX)2 -cc --- 
0% i=l 2 

. (2.6-12) 
X b,l.B2 

Under the condition that the underlying popula- 
tion is independent and normal, it was demon- 
strated in section 2.6.1 that X is normal with 
mean px and standard deviation ax/h Thus, 
(X-~~)~/(g~/n), under this condition, is chi 
square with 1 degree of freedom. One might 
reasonably expect, then, that 

(n-1)s; 

4 
-x2(4 (2.6-13) 

is a &i-square random variable with v=n-1 
degrees of freedom, which is indeed the case 
when the underlying population of Xi ‘s are in- 
dependent normal random variables. 

2.6.3 The F Distribution 

The density function for the ratio of two in- 
dependent &i-square random variables can be 
calculated rather easily by the method used in 
the previous sections. However, because we 
have little need of the actual form of this densi- 
ty function, known as the F distribution, we 
relieve the student of working through the ac- 
tual calculation if he or she wilI accept the 
following statement: If X, is a &i-square ran- 
dom variable with v1 degrees of freedom, and 
X2 is a &i-square random variable with v2 
degrees of freedom, and X, and X2 ere inde- 
pendent, then 

defines the F distribution with v1 and v2 degrees 
of freedom. 

Table 2.10-3 is a tabulation of values of 
F(v,,v,) which satisfies the probability 
statement 

P(F(vl,v2)~,(vl,v2))=l-ol , (2.6-15) 

where CY equals 0.05; the meaning of equation 
2.6-15 is illustrated in figure 2.6-l. Note that 
the reciprocal of an entry Fa(v1,v2) in table 
2.10-3 is equal to Fl-a(v2,v1). That is, if equa- 
tion 2.6-15 holds, then 

P(F(v2,vl)>Fp(v2,vl)) 
=~(1/F(v2,vl)<llFB(v2,vl)) 
=P(F(vl,v2)<11Fp(v2,yl)) 
= 09 (2.6-16) 

as, by equation 2.6-14, 1/F(v2,vl) is an F(v,,v,) 
random variable. By comparing equation 2.6-15 
with the third line in equation 2.6-16, we see 
that, when 0 equals l-a, 

Fcyb1.v2)= 
1 . 

FI-,b24 
(2.6-17) 
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Figure 2.6-l 

Thus, if we wish to evaluate F,-,(n,, n2) for the 
statement 

where 01 is the relative mass indicated in figure 
2.6-2, then we need only find F&,Y~), where 
v1=n2 and u2- -nl, in a table of values for the 
F distribution and calculate its reciprocal. 

As an example of a practical statistic associ- 
ated with the F(IQ,v~) random variable, consider 
two random samples of size nl and n2, which 
have been selected from two normal populations 
with variances 4 and 4, respectively. Let 

X1=(nl-l)S;luf (2.6-19) 

X2=(n2-l)S$7$ (2.6-20) 

where Sq and Sg are sample variances that are 
independent, because they originate from sepa- 
rate random samples. From equations 2.6-13 
and 2.6-14, we see that 

(2.6-21) 

is an F(v1,y2) random variable with vr=nr-1 and 
v2=n2-1 degrees of freedom. 

If 6 were to equal c$, then equation 2.6-21 
would undergo an obvious simplification. 
As a case in point, consider the ratio of 
(~-p~)2/(&/n), which is the square of a N(O,l) 
random variable, and (n-l)S$/& which is a 

X2(n-1) random variable, where x and S$are 
statistics developed from the same population. 
One can show (rather arduously) that x and S$ 
are independent, even though they originate 
from the same random sample. Thus, 

The square root of equation 2.6-22 is also 
known as a T random variable with n-l degrees 
of freedom. However, as the T random variable 
is, in general, equal to the square root of an 
F(vl, v2) random variable with vl=L, no addi- 
tional time will be devoted to it. 

Problem 2.6 1 

Residuals & from a titration experiment (sec- 
tion 2.2.5) have the following values in moles of 
acid: 

-0.011, +0.003, +0.004, -0.01, +0.005, 

+0.014, +0.004, +0.001, -0.01, +0.003. 

Calculate F and ~8 from this random sample. 
Assume cc& =O; from equation 2.6-22 derive the 
probability statement 

p(- j2QiFi-l <E/(S,/fi)< JFgcYi3n-l) ) = 1 -cr. 

(Hint: &b is equivalent to -&Qz<&). Find the 
interval corresponding to this statement when 
ar=O.O5 (that is, go to table 2.10-3 and find 
F,(l,n-1) and then calculate -&,(l,n-1) and 
J’F,o). How does the value of the statistic 

d 
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X 

Figure 2.6-2 

c/(S,/,@, calculated from the above random 
sample, compare with this interval? Would you 
expect this result? Would it bother you if the 
value fell outside the interval? 

2.7 Central limit Theorem 

An interesting and difficult-to-prove theorem 
of statistics and probability, known as the 
Central Limit Theorem, concerns the sum of 
random variables: 

Let XIXz,...,Xn be a sequence of identically 
distributed, independent random variables each 
with mean px and variance o$. Then, the dis- 
tribution of 

X-TX 

tends to a standard normal random variable as 
n goes to infinity. That is, 

regardless of the distribution of Xi, i=l,...,n. 
The key to understanding the impact of this 

theorem is to realize that the underlying distri- 
bution of the Xi random variables can be that 
of any random variable. Thus, for instance, a 
&i-square random variable with n degrees of 
freedom is the sum of other &i-square random 
variables, and, if n becomes large enough, the 
&i-square random variable approaches the 

normal random variable (in fact, the normal 
tables are used to approximate the &i-square 
random variable for large values of n). 

Another result of this theorem concerns the 
robustness of some of the distributions devel- 
oped in the previous section. In particular, if the 
underlying distribution of Xi’s was not normal 
in equation 2.6-22, this statistic would still be 
approximately an F(l,n-1) random variable, 
provided the sample size n were large. The argu- 
ment for this statement proceeds as follows: 
Because the numerator of equation 2.6-22 is, 
when n is large, the square of an approximate- 
ly normal random variable (by the central limit 
theorem), it will tend to be a &i-square distrib- 
uted random variable with 1 degree of freedom. 
The denominator, on the other hand, will ap- 
proach unity for large n, because another law 
of probability dictates that, as n becomes large, 
Si approaches gx (this phenomenon occurs 
regardless of the underlying distribution). The 
netresult is that, regardless of the distribution 
of the Xi random variables, equation 2.6-22 
tends, for large n, to be a &i-square distributed 
random variable with 1 degree of freedom. How- 
ever, one can show that, for large v2, the F(v~,zJ~) 
random variable (equation 2.6-14) tends to a 
&i-square random variable whose value has 
been diminished by a factor of l/v,. Thus, 
regardless of the underlying distribution of the 
Xi random variables, we say that equation 
2.6-22 behaves asymptotially as an F(l,n-1) 
random variable when n is large, as both equa- 
tions 2.6-22 and 2.6-14 have the same distribu- 
tion for the limiting case where the degrees of 
freedom in the denominator become large. 
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2.8 Confidence Limits 

We have already noted that statistics are ran- 
dom variables themselves. Now we wish to use 
the information developed in the previous sec- 
tions concerning the form of these random 
variables to make a statement about the reli- 
ability of these statistics as estimators. We at- 
tempt to define an interval, based upon the 
statistic, such that a certain percentage of all 
such intervals, as constructed from different 
random samples, contain the population param- 
eter that the statistic is thought to estimate. 
For example, if 5/6 of all possible intervals con- 
structed from repeated sampling contain the 
population parameter 8, then there is a prob- 
ability of 5/6 that the interval we construct from 
any given random sample actually contains 8 
(see figure 2.8-l). 

As an example of the interval-construction 
process, consider the statistic x and the popula- 
tion parameter px. We know, from the central 
limit theorem, that this statistic is approximate- 
ly normally distributed with mean px and 
standard deviation ax/& and that 

is approximately true. Of course, when jE is 
based on a random sampling of a normal popula- 
tion, then equation 2.8-l is exactly true. This 
standard normal random variable will be used 
to devise a (l-ar)lOO% confidence interval for 

px. This objective is achieved by first looking 
at the probability statement 

P(-~,/~(O,l)<N(O,l)<N,2(o,1))=1-a (2.8-2) 

and finding the values +N,/&O,l) which corre 
spond to 1-a. This probability statement says 
that, (l-cz)lOO% of the time, a value of N(O,l), 
obtained from a repetition of the experiment, 
will fall between -NU12(0,1) and N,l,(O,l). As- 
suming that ax is known, and with a little help 
from equation 2.8-1, equation 2.8-2 can be 
rewritten as 

=1-ar . (2.8-3) 

This probability statement says that, (l-(r)lOO% 
of the time, the interval (~-N,,~(O,l)~xl,k, x 
+~,,&M)~xm n constructed with a value of 
xi=2 from a particular random sample will con- 
tain /Jo. Thus, 

~-N,/&l) “x <py&.?+Na,&l) sn- F (2.8-4) 
n 

is a (l-ar)lOO% confidence interval for a random 
sample of size n, whose variance is known and 
whose sample mean E can be calculated. The in- 
vestigator would be able to say that the prob- 
ability is l-a! that this interval contains px; 
however, in interpreting this statement, one 

$1 I I I I I I I I 
0 1 2 3 4 5 6 etc. 

RANDOM SAMPLES 

Figure 2.8-l c 
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s should realize that the interval is random, not 
PX* 

As an actual numeric example of an applica- 
tion of equation 2.8-4, consider the following 
data: ux=0.3, X=2.6, n=36. Find a 95% confi- 
dence interval From table 2.10-1, for o/2=0.025, 
we see that iV,l,(0,1)=1.96. Hence a 95% con- 
fidence interval is 

or 

2.5O</~fi2.70 . 

Thus, as 95 of 100 intervals so constructed con- 
tain the mean, there is a 95% probability that 
this one contains px. 

If ax is not known, equation 2.8-4 cannot be 
used. However, if the underlying population is 
nearly normal, then a2,ca.n be estimated by Si 
as discussed in section 2.6.2 and one can use 
either the T distribution (with n-l degrees of 
freedom) or the F distribution as given in equa- 

D 

tion 2.6-22 to make an appropriate probability 
statement that can be converted to an interval 
on PX. 

Problem 2.8- 1 

a. Seven gold assays from stockpiled ore are: 
9.8, 10.2, 10.4, 9.8, 10.0, 10.2, and 9.6 
grams per metric ton. Find a 95% confi- 
dence interval for the mean grade of the 
ore assuming an approximate normal dis- 
tribution (hint: use equation 2.6-22; 
why?). 

b. Write an interpretation of this interval, 

2.9 Hypothesis Testing 

Assume that you have determined by a 
method which you consider to be very good that 
a population parameter 8 should take on a par- 
ticular range of values. On the other hand, 
another independent source suggests that the 
parameter 8 should take on a value b , which lies 
outside this range. This discrepancy is discon- 
certing, and you need some method of testing 
this independent estimate of 8. You construct 

b 
a hypothesis, referred to as the null hypothesis, 

Ho, that b is the true value of the parameter: 
symbolically this may be stated: 

H&=b. 

Ideally, of course, you wish to reject this 
hypothesis, but a procedure is needed whereby 
you can approach the problem objectively. 
When a random sample is available to the in- 
vestigator, hypothesis tests can provide this 
procedure. 

If, from a random sample X,, X, ,... ,X,, a test 
statistic $ can be constructed which, in some 
manner, is a measure of 0, then often a statis- 
tical method can be devised to test the probable 
veracity of the null hypothesis. It is assumed 
that the distribution of the test statistic is 
known under the assumption of the null hypoth- 
esis or at least can be approximated. Of course, 
by definition a statistic cannot contain any 
unknown parameters. Any population param- 
eters which it may contain must be known 
either by hypothesis or some other means; 
otherwise JI would cease to be a statistic. The 
statistical test will consist of finding a critical 
interval with a low probability of occurrence 
under the null hypothesis such that, should a 
value of $ as determined from a random sam- 
ple fall into this interval, the null hypothesis 
would be rejected and the alternate hypothesis 
H,, which usually consists of one of the follow- 
ing, would be accepted: 

H1:O>b 

H$<b 

H+#b. 

The alternate hypothesis chosen depends on the 
nature of the test. A method of intelligently 
selecting critical intervals must be devised 
before the test can be completed, for not any ar- 
bitrary interval with a small probability of oc- 
currence will do. 

2.9.1 Type I Error 

In hypothesis-testing procedures, one is ulti- 
mately concerned with the possibility of reject- 
ing the null hypothesis when it is true. The 
objective of hypothesis testing is to make as 
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small as possible the probability of committing 
this error, referred to as a type I error. That is, 
the probability statement 

(2.9-2) l 

P(reject HOIHo true)=o (2.9-l) 

is constructed, and cr, the level of significance 
of the test, is chosen as small as the investigator 
deems reasonable. For continuous random vari- 
ables, the probability a! must be associated with 
some interval about the test statistic J/, the 
statistic fulfilling the requirements of the null 
hypothesis. Generally speaking1 the test statis- 
tic + will contain an estimator 8 of the popula- 
tion parameter 8. If 8, as evaluated from 
some arbitrary random sampling of the experi- 
ment, were to have a value close to b, the as- 
sumed value of 8 under the null hypothesis, we 
would not expect to reject the n$.l hypothesis. 
Rather, only when this value of 8 was distant 
from b would the null hypothesis be rejected. 
Thus, the logical choice of an interval irk $ would 
be one in which all possible values of 8 used in 
the calculation of $ would be as distant as possi- 
ble from b. When the distribution of $ has in- 
finite tails, then this procedure will cause the 
interval to include one or both tails, depending 
on the nature of the test. This interval, whose 
exact starting and (or) ending point(s) will be 
determined by the significance level (Y of the 
test, will correspond to the critical region where 
Ho will be rejected should a calculated value of 
$I fall into this region. In most cases, this pro- 
cedure will cause the critical interval to obtain 
its maximum length at the chosen significance 
level (Y. 

When transforming equation 2.9-l into a 
probability statement over the test statistic $, 
it is often preferable to first conside! the impact 
of the alternate hypothesis on 8. Consider 
again the null hypothesis where e=b; then, 
should B>b properly represent the alternate 
hypothesis, it is useful to consider that, heuris- 
tically if not exactly, the probability offommit- 
ting a type I error can be, stated P(e>alHo), 
where a is some value of 8 such that b,<a<=, 
thus giving one an understanding that 8 must 
take on, relatively, a large positive value in 
order for Ho to be rejected. For this alternate 
hypothesis, a more accurate statement of equa- 
tion 2.9-l usually takes the form 

as the distribution of $ is always assumed to 
be known. 

To complete the above test, a value for c corv 
responding to CY is obtained from a table of 
cumulative probabilities. Values of $ less than 
c correspond to a region where the probability 
of committing a type I error may not be small. 
Therefore, if a value of $ is less than c, we are 
forced to accept the null hypothesis to avoid 
committing a type I error. If this value is larger 
than c, then the probability of committing this 
error is considered small, and we can confidently 
reject Ho at the (Y significance level. 

Examples of hypothesis testing, which should 
clarify the actual mechanics of the procedure, 
are presented subsequently; however, before 
proceeding to these examples, note that we are 
frequently required to play the role of the devil’s 
advocate in hypothesis testing. Often, we really 
desire to test the acceptability of a hypothesized 
value of a parameter. To accomplish this task, 
we first attempt to reject this value by making 
it the subject of the null hypothesis. If we can- 
not reject the null hypothesis, then we must ad- 
mit that the hypothesized value is indeed a 
candidate for the true value of the parameter 
in question. 

2.9.2 One-Tailed Test 

As an example of developing the probability 
statement associated with equation 2.9-2, 
assume that we wish to test the hypothesis that 
the mean of a population is c(~, versus the alter- 
nate hypothesis that the population mean is 
greater than p. (assume that the standard 
deviation ax is known): 

Ho:crx=ro 

versus 

This test is referred to as a one-tailed test 
because the alternate hypothesis only allows for 
a mean greater than that indicated by Ho. 

A random variable is needed whereby we may 
build a probability statement around the type 



REGRESSION MODELING OF GROUND-WATER FLOW 41 

I error. Assume that data in the form of a ran- 
dom sample X1,X,,..., X, from the population 
exist; a natural random variable for this purpose 
would be the estimator of the mean X. As X is 
an estimator of px, and as the alternate hypoth- 
esis presupposes that px is large, one would re 
ject Ho if a value of X, as determined from a 
random sample, were significantly larger than 
pP From the central limit theorem, assume that 
X is approximately normally distributed with 
mean px and standard deviation ax/&. Equa- 
tion 2.9-2 can be represented in terms of the 
statistic X as 

P(~>u~Ho)=a. (2.9-3) 

Although the distribution of X is known, a 
statistic which will allow us to incorporate the 
null hypothesis that px=ro is needed. A 
statistic meeting this requirement and for which 
values of all the parameters can be supplied is 
(%-~x)/(~x/&). With this test statistic, equa- 
tion 2.9-3 can be restated as 

B I P 
T-CL, 
- >cJpx=po 
qJSn 1 I 

GO 
=P ~ 

U&i 
>ivJO,l) =(Y 

1 
(2.9-4) 

where p. is used in place of px to satisfy the 
null hypothesis. Note that under the null 
hypothesis (~-ro)/(axl&) is a normal random 
variable with mean zero and variance unity; 
thus, N,(O,l) becomes the lower limit c of the 
critical region for this test. 

All possible values of the test statistic greater 
than N,(O,l), where 01 is the level of significance 
of the test, constitute the critical region where 
Ho would be rejected. In other words, N,(O,l) 
is the critical value, corresponding to the limit 
c in equation 2.9-2, which determines whether 
we accept or reject the null hypothesis. If a 
value of the test statistic is greater than 
N,(O,l), we would reject Ho at the CY significance 
level. If the value were less, then we would be 
forced to accept the null hypothesis for fear of 
making a type I error. 

As a sample application of this procedure, 
consider the data used to construct the con- 
fidence interval at the end of section 2.8: 
ux=0.3, X=2.6 and n=36. We are told that the 

population mean is really zero, a statement that 
seems rather dubious to us as we believe it to 
be some positive real number. We set the null 
hypothesis that px is indeed zero, Ho:px=O, 
and hope that we can confidently disallow it. 
Our alternate hypothesis consists of our own 
belief, H1:pxX. As we wish to be very sure 
that we do not commit a type I error, we set the 
level of significance of our test at (r=O.O25. We 
determine the critical value of our test statistic 
from table 2.10-l: N,(O,1)=1.96. We evaluate 
the test statistic under the assumption of the 
null hypothesis: X/(ax/$z)=52. Because this 
value of the test statistic is considerably larger 
than the critical value, we reject Ho at the 0.025 
significance level, realizing that, although we 
may have committed a type I error, it is highly 
unlikely. 

2.9.3 Two-Tailed lest 

Suppose that gxis unknown, but we are 
given a random sample X,,X,,...,X, from a nor- 
mal population. We wish to test the hypothesis 

HO:PX=PO 

versus 
H,:PJ&o 

at a significance level CL This is referred to as 
a two-tailed test: We reject Ho if a measure of 
px is either significantly greater or less than b. 

To construct this test, recall the statistic from 
equation 2.6-22: 

(hx)2 
- mF(1, n-l) 

S$z 
(2.94) 

which is the F&n-l) random variable. This 
statistic fulfills our requirement for a test sta- 
tistic; it can be used to satisfy the null hypoth- 
esis, and the remaining statistics or parameters 
are either known or can be evaluated from a ran- 
dom sample. Now consider the probability of a 
type I error: 

P(reject HolHo true) 

=P(x<a)Ho,+P(x>blHo) 

=a I (2.9-6) 
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where two critical values are necessary as it is 
possible to reject the null hypothesis if a value 
of x is either larger or smaller than m In terms 
of the test statistic, under the condition that the 
null hypothesis holds, we see that 

=p - 
1 

%@o 

S,lSn 
<- JqJijq 

1 
%Q) 

+P - 
S,G 

>@pFV 

=CY (2.9-7) 

which is equivalent to equation 2.9-6. 
To complete the test, we need only to evaluate 

the test statistic with a random sample. If 
(Z-p,J2/(&n) be greater than F&n-l), we 
would reject the null hypothesis at the (Y signif- 
icance level. 

2.9.4 Type II Error 

A test statistic is commonly selected for its 
ability to determine the probability of commit- 
ting a type II error, as well as a type I error. 
A type II error is committed by accepting the 
null hypothesis when the alternate is true. By 
calculating the probability that the test statistic 
does not fall in the critical region, given that 8 
takes on any value other than that assumed 
under the null hypothesis, the probability 6 of 
committing this error can be evaluated. Thus, 
for tests indicated previously, ,4 is a continuous 
function of possible values of the population 
parameter 8, other than the value b assumed 
under the null hypothesis. For a critical region 
corresponding to a given Q, a good test statistic 

should produce small values of /3 for hypothet- 
ical values of 0 rather distant from b. However, 
6 should increase sharply in value as possible 
values of 0 approach b and obtain a value as 
close to one as feasible in the immediate vicini- 
ty of b. Means are available for determining test 
statistics which, for certain tests, excel at the 
above characteristics, but a presentation of 
these methods is beyond the scope of this 
course. In most cases, a statistic which contains 
an estimator of the population parameter being 
tested and for which all other parameters are 
either known, or estimators of said parameters 
are contained in the statistic, will suffice as a 
test statistic; however, it may not be the best 
test statistic. 

Note that if CY, the probability of committing 
a type I error, were made extremely small, then 
the null hypothesis would almost always be ac- 
cepted. At first glance, one would assume that 
something was amiss in the hypothesis testing 
procedure, as it is apparently possible to bias 
the test by selecting an extreme value for CY. 
However, when the value of CY is decreased, the 
probability of committing a type II error, P(0), 
is increased for all values 0. Thus, an investi- 
gator who seeks to avoid committing a type I 
error by intentionally selecting a small value for 
a! runs an increased risk of committing a type 
II error, which is equally as damaging. If need 
be, a plot of 6(C) can be made for various 
hypothetical values of a! and 8; this can often 
be a rather complicated task. A rule-of-thumb 
value for CY is 0.05, which appears to serve 
hypothesis test users well in most cases. 

2.9.5 Summary of Method 

To summarize, the steps for testing a hypoth- 
esis concerning a population parameter 8 are: 

1. Define the null hypothesis I&,:8=8,. 
2. Decide upon the nature of the test; that 

is, N1:8<8u, W1:8>0u or H,:e # 8,. 
3. Choose a level of significance 01. 
4. Select an appropriate test statistic and 

establish the critical region. 
5. Compute the value of the statistic from 

a random sample of size n. 
6. Draw conclusion of test: reject He if the 

statistic has a value in the critical region; 
otherwise accept Ho. 

4 
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Problem 2.9- 1 
n 

I 
a. Set up problem 2.6-l as a hypothesis test 

(do not complete the test). 
b. Given two random samples from inde- 

pendent normal populations with the fol- 
lowing sample statistics: 

a; 
Hoz 02 =l 2 

StatiStiC 

n 
Ii 

sz 

Random sample 1 Random sample 2 

25 16 
82 78 

8 7 

test the following hypotheses at a signif- 
icance level of a=O.O5: 

43 

4 
H1:B’l * 2 

c. An outside source informs you that the 
stockpiled ore of problem 2.8-l actually 
only assays an average of 9.8 grams per 
metric ton. Can you refute this claim at 
a significance level of 0.05? (Construct a 
hypothesis test for this purpose.) 
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